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Abstract-The equations for small deformations superimposed on large deformations of a hyperelastic
material of grade 2 are formulated and applied to derive a basic integral relation that is used to establish
generalized Betti, Clapeyron, work and energy theorems. Theorems of minimum and complementary energy
are deduced essentially from an energy criterion of super·stability, and these are used to prove uniqueness of
solutions to the static and dynamic, mixed incremental boundary value problems. These results use a certain
generalized kinetic energy functional that is assumed positive definite; and this property and the reciprocal
and energy principles are exploited further to establish some theorems in the theory of smaU free vibrations.

1. INTRODUCTION

The finite theory of hyperelasticity for Cosserat and grade 2 materials in equilibrium was
developed by Toupin[l] in 1%2. Two years later he developed in [2] a more comprehensive and
deep, analysis of oriented hyperelastic materials characterized by a set of deformable directors,
and he reformulated the grade 2 theory on the basis of an elegant, though possibly deceptively
simple, variational equation. However, the two theories are developed along quite different
directions, and there is no mention of any connection between the director-oriented and
non-simple, grade 2 continua. We have shown in [3] that an oriented continuum in which the
director triad is constrained to stretch and rotate in harmony with the local deformation of
material line elements of the continuum is a grade 2 material; of course, not every grade 2
material need be characterized in this manner. Nevertheless, we have derived from Toupin's
director theory the variational principle and basic general equations for hyperelastic materials of
grade 2. Though equivalent to the theory proposed by Toupin[2], these equations have a different
structure that is easier to use and interpret in more direct physical terms. These results are
sketched in Section 2.

Toupin[1] has described some features of plane wave propagation in the context of the theory
of small vibrations superimposed on an equilibrium configuration of a hyperelastic Cosserat
continuum in homogeneous, finite strain without body or hyper-body forces and having only the
usual linear momentum. Toupin and Gazis[4] have applied the incremental theory to study a
uniform crystal in which initial stress and hyperstress produced surface deformations in a thin
boundary layer characteristic of deformations reported in electron diffraction experiments. In the
present study, we shall apply this theory in the proofs of several fundamental theorems for
general hyperelastic grade 2 materials. The equations for the theory of small deformations
superimposed on large deformations of a byperelastic material of grade 2are derived in Section 3
from the theory formulated in [3].

The total incremental strain energy and generalized kinetic energy are defined in Section 4, and
in Section 5 we derive a useful integral relation that yields as special cases generalized versions of
the classical Betti and Clapeyron theorems and a basic energy theorem. Similar theorems of the
Betti-Clapeyron type have been proved by Beatty[5] for hyperelastic materials in the linearized
theory of couple-stresses, and, about the same time, also by Sandru [6J for the particular isotropic
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material; but the energy theorem, which includes the classical result, was not considered.
Moreover, the present more general analysis is significantly different and more complex in its
structure as to warrant separate attention for itself.

A dead load stability criterion and related definitions of DL stability and superstability for
grade 2 materials are provided in Section 6. It is shown that the linearized dead load criterion is
equivalent to the criterion that the second variation of a certain potential energy functional be
non-negative for all infinitesimal virtual deformations that satisfy the boundary conditions. The
result is based upon the variational equation derived in [3].

In Section 7, theorems of minimum and maximum potential energy are deduced essentially
from the criterion of superstability. Parallel theorems for simple hyperelastic materials have been
derived by Shield and Fosdick[7]; their results are here included as a special case. With the aid of
these principles, which are similar to the classical theorems, it is shown that the solution of the
mixed, incremental boundary value problem of equilibrium is unique; the traction problem
solution, as usual, is unique only to within a rigid motion. In addition, it is shown in Section 8 that
the weaker DL stability criterion is sufficient for uniqueness of the corresponding dynamic
problem provided that the generalized kinetic energy functional is positive definite, as it is in the
classical case to which the general definition reduces for special circumstances.

Normal mode functions are introduced in Section 9 and from our reciprocal theorem we find,
subject to certain boundary conditions, that these functions satisfy a certain generalized
orthogonality condition that includes as an example the well known classical criterion for
orthogonal vector functions. Finally, we prove that if the kinetic energy is a positive definite
functional and the underlying equilibrium configuration is DL superstable and certain boundary
conditions can be met, then in a superimposed infinitesimal vibration all frequencies are real and
positive, which is an easy consequence of our energy theorem.

2. BASIC EQUATIONS FOR MATERIALS OF GRADE 2

The field equations and natural boundary conditions for a hyperelastic grade 2 material with
response function

L =L(X,x,F,F,G,t),

per unit volume in an assigned reference configuration K, are given by

Div T+Z = P for all X E ~,

TN=TN+D'tP, tPN=O forallXEa~,

[cI»M] = 0 for all X E cg,

wherein, by definition,

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

In these relations, which are derived in [3], the momentum vector P, the hypermomentum tensor
Q, the first Piola-Kirchhoff stress tensor T and the hyperstress tensor 8, which are referred to
the boundary a~ of the body ~ in K, are determined by (2.1) in accordance with

T = - e~ + Div 8), 8 = - :~, p = ~~, Q= :~. (2.6)

In addition, TN, UN define the traction vector and hypertraction tensor referred to K wherein X is
the place occupied by the particle X whose position vector and velocity in the present
configuration X at time t are x(X, t) and i(X, t), respectively; Z and K denote the body force and
hyper-body force per unit volume in K; and G = VF is the material gradient of the deformation
gradient F = ax/ax. Also, a superimposed dot denotes the material time derivative; the
divergence operator refers to material variables; D is the material surface gradient, and its inner
product with any tensor V defines a surface divergence D'YV,,· ../i'Y. Finally, the bold brackets
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denote the jump in the enclosed quantity as the boundary edges C€ are approached from each side,
and M!!i! S x N, where S is the usual left oriented unit tangent vector to ~ in /( and Nis the unit
normal vector to a~ in K.

3. INCREMENTAL EQUATIONS FOR GRADE 2 MATERIALS

Let X'(X, t) and X(X, t) be two smooth motions of}8 referred to K. Then the superimposed
incremental motion u(X, t) and its first two material gradients are defined by

(2)

u(X, t) = X'(X, t) - X(X, t), 1= Vu = au/ax, g = VI = Vu. (3.1)

We shall require that the magnitudes of these quantities and their material time derivatives be
sufficiently small compared to unity so that subsequent linearization in terms of these is rendered
meaningful.

Let a primed entity, say V', bear the same interpretation with respect to the motion X'(X, t) as
the corresponding unprimed entity has with respect to X(X, t). Then for any tensor V we write
V* == V' - V for the increment V* of V. Moreover, we shall consider only hyperelastic grade 2
materials for which the response function (2.1) has the separable form

L = 11 (X, i, F) - I(x, F, G), (3.2)

in which 11 is identified as the kinetic energy density and I is the elastic strain energy density, both
taken per unit volume in K. We shall suppose that both functions are continuously differentiable
in each of their respective arguments. Thus, substituting (3.2) into (2.6) and expanding the results
in a Taylor series to first order in I, g, t, gdefined by (3.1), we find that the incremental stress T*,
hyperstress B*, momentum P* and hypermomentum Q* are determined byt

wherein, by definition,

T* = A . f+ B . g- Div B*, B* = BT • f+ C . g,

P* =a . il+P . t, Q* =pT. U+l' . t,
(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

all of which are to be evaluated for x(X, t). In particular, when the kinetic energy density is given
by

in which Pot is the mass density in K and I is a constant, positive symmetric tensor, (3.6) gives
a =p"l, P= pT =0 and l' = I Ik8'rlJ e,.,tIJ. Hence, (3.4) yields, for example, P* = PotU, Q* = Ii.

Equations (3.3)-(3.4) are the constitutive equations for infinitesimal deformations superim­
posed on an initial deformation of a hyperelastic grade 2material. The equations of balance for the
superimposed motion are obtained easily from (2.2)-(2.5):

where

DivT*+Z* =P*,

T~=T*N+D'c()*' c()*N=Oon a~; [c()*M]=Oon C€,

T* = T* - K* + Q*, c()* = B~-U*N.

(3.8)

(3.9)

(3.10)

tThe inner product of a tensor U of rank p +q with a tensor V of rank q is defined in the tensor basis
e"...• == e" 0· .. 0 e. by

U· V == U«..·..····V,...• e«...,..
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4. INCREMENTAL STRAIN ENERGY AND KINETIC ENERGY

Let a, b, t: be any twice di1ferentiable vector fields and define the inner productt
(2) (2) (2) (2)

(a, b) =d{A[Va, Vb] + B[Va, Vb]+BT[Va, Vb]+C[Va, Vb]).

In view of (3.5), (4.1) has the commutative and distributive properties

(a, b) = (b, a), (/a + mb, c) = I(a, c) + m(b, c),

in which I, m are scalars. The usual rule for the derivative of a product also holds:

d '.
dt (a, b) = (a, b) +(a, b).

(4.1)

(4.2)

(4.3)

The product (4.1) holds particular interest when a = b = o. Expansion of the strain energy in a
Taylor series to second order in f and gand use of (2.6) reveals that the incremental strain energy I*
is given by

I* = (T +Div H) . f +H . g+ (0, u); (4.4)

hence, (0, 0) is the second order increment in the incremental strain energy density, which with the
help of (3.3) and (3.5) can be written

2(0,0) = (T* + DivH*)· f + H*· g. (4.5)

Thus, the second order contribution to the total strain energy increment for the infinitesimal
superimposed motion (3.1) is given by

U a t (0,0) dV = fill HA[f, f] + B[f, g] + BT[g, f] + erg, g]} dV.

Similarly, let e, d be any differentiable vector fields and define the inner product

«e, d» a Ha[e, d] + p[e, Vd] +pT[Ve, d] + y[Ve, Vd]}.

(4.6)

(4.7)

It is clear that (3.6) implies for (4.7) the same kind of commutative, distributive and derivative
properties as in (4.2)-(4.3). With the aid of (3.4) and (3.6), (4.'7) can also be written

«e, d» = Hp*(d) . e+ Q*(d) . Vel. (4.8)

Upon expansion of the kinetic energy function to terms of second order in 0 and f, and use of (4.7)
with e = d = u shows that «0, u» is the second order increment in 11 *. Hence, the second order
increment in the total incremental kinetic energy is given by

K= fill «u,o»dV= fill Ha[u,o]+P[o,f]+pT[f,u]+y[f,f]}dV. (4.9)

5. THE RECIPROCAL, WORK AND ENERGY THEOREMS

Let v(X, t) be a twice continuously differentiable vector field on $ and 0$, and let us consider
the integral

I=f (Tit·v+Hit·Vv)dA+ f (Z*·v+K*·Vv)dV
aIII Jill
- Jill (P*' v+ Q* . Vv) dV. (5.1)

tIt U is a p + q·tensor, V is a p-tensor and W is a q-tensor.then U[V, Wj '" V· (U· W) = vo
~,. 'Vo .~W> .• is a scalar

product.
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Using (3.9b and (3.10), and noting that on a~ in K

Vv = Dv+(Dv) @N, D(!N' N)= - BN =0,
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(5.2)

wherein B= - DN is the symmetric second fundamental form and D is the normal derivative for
a~ [see Ref. 8], we find

f (T~' v+ H~' Vv)dA=f (v 'T*N+Vv' H*N)dA -f {D' (N@v4J*)}·NdA.alU alU alii

However, application of Toupin's integral identity[1, 9] to the last integral and use of the
boundary relations (3.9h3 reveals that this term is zero; therefore, with the divergence theorem
and the incremental balance equation (3.8), (5.1) can be written as

(2)

1 = flli [(T*+ DivH*)' Vv+ H*· Vv] dV.

Finally, with the aid of (3.3), (4.1), (4.2) and (5.1), (5.3) yields

1=2 f (v,u)dV=2 f (u,v)dv=f (T~·v+H~·Vv)dAJltl JIU aIII

+ flU (z*· v+ K* . Vv) dV - fill (P*' V+ Q* . Vv) dV

(5.3)

(5.4)

for all u (or v) that satisfy (3.8)-(3.9) for assigned Z* and K*.
Beatty[5] has remarked that the classical Betti reciprocal theorem and the Clapeyron work

theorem hold within the more general context of the theory of small deformations superimposed
on large deformations of hyperelastic materials with couple-stresses. On the basis of the general
integral relation (5.4) we can now prove easily for more general grade 2 materials the theorems
suggested in [5].

Let u(X, t) and u(X, t) be two incremental motions of a hyperela~tic body ~ of grade 2, and let
A = {T~, H~, Z*, K*, - P*, - Q*} and A = {T~, ii~, Z*, K*, - P*, - Q*} represent, with respect to
K, two sets of incremental actions consisting of surface tractions and hypertractions per unit area,
body forces and hyper-body forces per unit volume, inertia forces and hyper-inertia forces per
unit volume, that are necessary to produce the two motions u, fi, respectively; and let D = {u, f}
and fj ={ii, f} define two corresponding sets of generalized displacements for these [see (3.1)].
Then putting v = u in (5.4), we have at once the following

Reciprocal Theorem: The total work that would be done on a hyperelastic body ~ ofgrade 2 by
the actions A acting over the generalized displacements fj produced by the actions A is equal to
the total work that would be done on ~ by the actions Aacting over the generalized displacements
D produced by the actions A:

f (T~' u+H~' f) dA + f (Z*· u+ K* . f) dV - r (P*. u+ Q* . I) dVall'l JlIi Jill

= f (T~ .u + ii~· f) dA + ( (Z*· u + K* . f) dV - { (p*. u + Q* . f) dV. (5.5)
aIII Jltl Jill

Let u(X, t) be an infinitesimal motion superimposed on an equilibrium configuration X of $.
Then upon setting v = u in (5.4) and introducing (4.6)" we obtain the following

Work Theorem: Let a hyperelastic body $ of grade 2 experience an infinitesimal generalized
displacement D from an equilibrium configuration X to a configuration X' at time t. Then the
second order increment U in the total strain energy at time t is equal to one half the work that
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would be done by the actions A over D at time t:

2U = f (T~' u + H~· f) dA +1(Z*· u + K* . f) dV -1 (p*. u + Q* . f) d V. (5.6)
Jail' 'll 'll

Finally, let X be an equilibrium configuration of '6. Then with v =ii, (5.4) becomes

2 ( (u, ti) dV + f (p*. ti + Q* . i) dV = ( (T~ . ti + Hitr . f) dA
JlIl JlIl Ja'll

+ Ilil (Z*·u+K*·f)dV. (5.7)

Also, with a = b = u in (4.2)1 and (4.3), and similarly, with c = d = ti in (4.7), (4.6)1 and (4.9)1 yield

(J = ~ Ilil (u, u) dV = 2 Ilil (u, ti) d V,

K= ~ Ilil «0, ti» d V = 2I'll «u, ii» dv.

From (4.7) and (3.4), we find also 2«u, ii» = p* . U+Q* . i. Thus, collecting these results in (5.7), we
reach the

Principle of Incremental Energy Balance: The time rate of change of the sum of the total
incremental kinetic energy and the total incremental strain energy is equal to rate at which work is
done by all surface and body actions in an incremental superimposed motion:

K+ iJ = w==1 (Titr· ti + Hie- . f) dA +1(z*· ti + K* . f) dV.
311l 1Il

(5.8)

Finally, integration of (5.8) over the time interval [t h tz], and writing aK =K(tz) - K(t l ), etc.,
we find the

Energy Theorem: Let a generalized displacement D corresponding to the actions A be
superimposed on an equilibrium configuration ofa hyperelastic material ofgrade 2. Then the work
11 W done by the incremental loading TJe., Hie-, Z*, K* equals the sum of the changes 11K and 11 U in
the second order increments of the total kinetic energy and the total strain energy for D:
IlW=IlK+IlU.

6. STABILITY OF EQUILIBRIUM UNDER DEAD LOADS

Let X be an equilibrium configuration of '6 subject to loading L = {TN, HN, Z, K}, and let
Sx(X, T) be a virtual deformation corresponding to the incremental actions A {T~, H~, Z*, K*},
T being a suitable path parameter such that 5x(X,0) O. The total work w done by the total
loading L U A in the virtual deformation h is defined by

w = f ds{Llil [(TN + Tie-) . 5i+(HN + Hie-)' V5i]dA

+ Ilil [(Z+Z*)'Si+(K+K*),VSi]dV},

wherein Si = a(Sx(X, s»as. The corresponding increase in the total strain energy 'l is

'g= f ds I'll I(X,s)dV= Ilil I*(X,T)dV

(6.1)

(6.2)

in which I* = I(X, 7) - I(X, 0). Then, following Beatty[lO, 11], we adopt the usual Energy
Criterion of Stabi6ty: An equilibrium configuration X of a hyperelastic material of grade 2 is said
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to be stable for boundary conditions ofplace and surface actions if and only if the work done by
the total loading in every virtual deformation from X consistent with the boundary data and
material constraints does not exceed the corresponding increase in the total stored energy;
otherwise, it is called unstable.

Thus, for stability we require w s: 'If for (6.1) and (6.2) in general. In particular, when all the
incremental actions A are zero, the loading L is called dead loadingt, and the criterion becomes

DE =[ [TN ·Sx+HN ·V8xJdA+ { [Z'8x+K,V8x]dV- (I*dVs:O. (6.3)
Ja$ J$ )$

Since X is an equilibrium configuration, Pand Q vanish in X. Moreover, because the first two
terms in (6.3) are similar in structure to those in (5.l), a parallel analysis will yield a relation
similar to (5.3); thus, introducing the second order approximation (4.4)-(4.5) with u =8x, (6.3)
yields for stability

(6.4)

The following definitions are introduced for future convenience: (i) An equilibrium configuration
is said to be DL stable for boundary conditions of place and dead load surface tractions if (6.4)
holds for all infinitesimal virtual deformations that satisfy the boundary datat; and (ii) An
equilibrium configuration Xis called DL superstable if Xis DL stable with equality in (6.4) holding
when and only when 8x is trivially zero or corresponds to an infinitesimal, rigid virtual
deformation.§

The DL stability criterion (6.4) is related directly to the variational principle from which the
basic equations (2.2)-(2.4) were derived in [3J; namely,

(8L+Z.8x+K.8F)dV+( (TN'8x+HN '8F)dA
)$ Ja$

_.! ( (P'8x+Q'8F)dV=O
dt}!fj (6.5)

wherein 8F = V8x. We can establish this result by introducing a potential energy E for the
equilibrium configuration X defined by

E = ( (I - Z . x - K . F) dV - { (TN' x + HN . F) dA.
J$ Ja!fj

(6.6)

The increment in E due to an infinitesimal virtual displacement 8x under dead loading L is
given by

E*= ( (I*-Z'8x-K'8F)dV- ( (TN ·8x+HN ·8F)dA. (6.7)
J!fj Ja'ifl

Substitution of (6.7) into (6.3) shows that the exact stability functional can be written E *~ 0 for
all admissible virtual deformations.

Now, E* = 8E + 82E + ... and 1* = 81 + 82I + ... ; hence, from (6.7),

8E={ (8I-Z.8x-K.8F)dV-( (TN '8x+HN'8F)dA, (6.8)
J!fj )a'tl

8
2
E= I'tl 8

2
IdV= I$ (8x,8x)dV, (6.9)

.tOf cou~se, a~ remarked in [II] in a more general context. any loading for which the total work done by the incremental
actions vanishes m(6.1) leads to the same form as (6.3); however, dead loading is a stronger condition requiring A = {O}.

tMaterial constraints will not be introduced here.
§The effect of rigid variations in a constrained Cosserat continuum is studied in [11]. We shall have no need to pursue it

here.
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where the last equality follows essentially from (4.4) and (4.6)1. However, since X is an
equilibrium configuration, the kinetic energy function vanishes in (3.2), and we have P== 0, Q== 0
and SL = - SI in (6.5). Hence, SE = 0 in (6.8) and E* = SZE.

Of course, the vanishing of (6.8) for all virtual motions leads to the basic equations (2.2)-(2.4)
that were derived from (6.5) initially. It is clear from (6.9) that the second variation in the
potential energy (6.6) is equal to the second variation in the total strain energy, so we recover the
stability theorem (6.4): An equilibrium configuration X is Dr- stable (superstable) if and only if the
second variation in the total strain energy is non -negative (positive) for all admissible virtual
deformations from X.

7. THEOREMS ON MINIMUM AND MAXIMUM POTENTIAL ENERGY AND UNIQUENESS

Let X be an equilibrium configuration of \lS and let u(X) be a solution of the following mixed,
incremental boundary value problem in the theory of small deformations superimposed on large
deformations of a hyperelastic material of grade 2:

(a) Equations of motion:

Div 1'* + Z* = 0

wherein 1'* = T* - Div K*.
(b) Traction boundary data:

(i) T~= SN, Ht= MN on a\lSt,

(ii) HtN = RN on aIUz,

(7.1)

(7.2)

(7.3)

wherein alUl and alUz are two non-intersecting parts of aIU and SN, MN, RNare certain prescribed
tractions and hypertractions.

(c) Displacement boundary data:

(i) u(X, t) = ",(X, t) on a\lS\a \lSI == a\lS3
(ii) Du(X, t) = vex, t) on alU\(alUl u alUz) == a1U4,

(7.4)

(7.5)

where ",(X, t) and veX, t) are prescribed functions of Xand t on a\lS as indicated. Of course, in
the static case we ignore the time dependence; it is inserted here only for future convenience.

Let (J'k be the set of all non-vanishing motions that satisfy the kinematic boundary conditions
(7.4)-(7.5). If wE Uk, then w is called kinematically admissible. For any twice continuously
differentiable displacement w we define an incremental potential energy function P[w] by

P[W]==! «w, w)- Z*· w- K*· Vw)dV - f (SN . w+ MN . Vw)dA
'Il a'll,

-f RN • Dw dA, (7.6)a'll,

where (w, w) is defined by (4.1) and SN, MN, RN , Z*, K* are assigned in the problem (7.1)-(7.5) for
u. Moreover, with v = w - u, (4.2) yields

(w, w) - (u, u) = (v, v) + 2(u, v);

hence, the combination of (7.6) and (7.7) gives for u E Uk

(7.7)

P[w]-P[u]- I'll (v,v)dV= I'll (2(u,v)-Z*·v-K*·Vv)dV

_f (SN'v+MN·Vv)dA- f RN·DvdA. (7.8)
la'lll la'll2
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Now, let wE Uk. Then v 55 0 and Dv 55 0 everywhere on iJ ~3; hence, T]o{ • v=0 and HN • Dv =0
on iJ~3' Similarly, H~ . Dv = 0 on iJ~4. In view of these conditions, (5.2)1 and the traction
conditions (7.2), the sudace integrals in (7.8) are equivalent to Jalll(T~· v+ H~' Vv) dA. Since u is
a solution to the static, mixed boundary value problem (7.1)-(7.5), it satisfies the identity (5.4)
with P* =0 and Q* =O. Therefore. the right hand side of (7.8) vanishes, and we have

P[w] - P[u] = t (v, v) dV.

Consequently, if X is DL superstable for all virtual displacements v =w- u satisfying

(7.9)

(7.10)

we have P[w) =:: P[u] for all wE Uk with equality holding when and only when v is an
infinitesimal rigid motion or identically zero. Of course, in general the displacement boundary
conditions preclude v being a rigid motion. We have thus established the following

1'beorem on MiDimum Potential Energy: Let X be an equilibrium configuration that is DL

superstable for all virtual deformations v that meet (7.10), and let u be a solution to the mixed,
incremental boundary value problem (7.l}-{7.5). Then for all kinematically admissible deforma­
tions w # u and which do not differ from u by an infinitesimal rigid motion, the corresponding
potential energy exceeds that for u:

P[w] > P[u]. (7.11)

That is, in classical terms, among all motions that satisfy the displacement boundary data and do
not differ by an infinitesimal rigid or trivial motion, the one that satisfies the equilibrium equations
and traction boundary conditions renders the incremental potential-energy arelative minimum.

We can also derive a maximum potential energy principle. Let Ut be the set of all
non-vanishing motions that satisfy the equations of equilibrium and the traction boundary
conditions (7.1}-{7.3). If w E u" then w is said to be statically admissible. Now, for any w we
define the incremental complementary energy functional Q[w] by

Q[W]55P[W]+1 [T~'(P.-W)+H~'V(p.-W)]dA+1 H~N'(,,-Dw)dA (7.12)
a~ a~

in which p., " are assigned in the problem (7.1}-{7.5) for a solution u. Hence, Q[u] = P[u]. We
may interchange u and w in (7.7) to obtain

(u, u)-(w, w)= (v, v)+ 2(v, w),

where v=u- w: Then with (7.6) we find

P[u] - t (v, v)dV = P[w] + flU [2(v, w)- z*· v- K*· Vv]

-1 [SN' v+MN ' Vv]dA -1 RN • DvdA, (7.13)
alll, all!,

wherein Z*, K*, S]o{, M]o{, RN are assigned in the problem (7.1)-(7.5) for u.
Let wE Ut, and put p* =0 and Q* =0 in (5.4). Then application of the traction boundary

conditions (7.2}-{7.3) and the rule (5.2) shows that the right hand side of (7.13) is the same as that
in (7.12); therefore, we have

Q[u]- Q[w] = fll! (v, v)dV. (7.14)
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Thus, if X is DL superstable for all virtual deformations v = u - wthat satisfy the null equations

Div T* = 0 in~; T~= 0, H~= 0 on a~l; H~N = 0 on a~2' (7.15)

then Q[u] 2:: Q[w] for all w E (T" the equality holding when and only when v is an infinitesimal
rigid motion or identically zero. We have proved the following

Theorem on Maximum Potential Energy: If an equilibrium configuration is DL superstable for
all virtual motions v = u- w that satisfy (7.15) and for which u is a solution to the mixed,
incremental boundary value problem (7.1)-(7.5), for all statically admissible deformations w# u
and which do not differ from u by an infinitesimal rigid motion, the corresponding complementary
energy is less than that for U:

Q[u] > Q[w]. (7.16)

That is, among all motions that satisfy the equilibrium equations and traction boundary data, and
which do not differ by an infinitesimal rigid or trivial motion, the one that satisfies also the
displacement boundary data renders the complementary potential energy a relative maximum.

Finally, let us assume that u and w are distinct solutions of the mixed, incremental boundary
value problem and do not differ by an infinitesimal rigid body motion; and assume also that X is
DL superstable for v = w- u that satisfies (7.10), or for v = u - w that satisfies (7.15). Then from
(7.9), since both u and w are solutions of the boundary value problem,

P[w]-P[u] = I'll (v,v}dV= I'll (-v,-v}dV=P[u]-P[w],

that is, pew] = P[u]. Similarly, Q[w] = Q[u] from (7.14). However, these violate (7.11) and (7.16)
unless w = u. We have the following

Uniqueness Theorem of Equilibrium: IfX is an equilibrium configuration that is DL superstable
for all virtual displacements that satisfy (7.10) or (7.15) and which do not differ by a rigid body
motion, then the mixed, incremental boundary value problem (7.1H7.5) has at most one solution
u(X); and this is the solution for which the potential energy is a relative minimum for all
kinematically admissible displacements and for which the complementary energy is a relative
maximum for all statically admissible displacements.

In the traction boundary value problem a$\ = a$, a$2 = cP, the empty set, and the class of
admissible motions is the set of all infinitesimal deformations. In this case v may be a uniform
rigid body motion; and all motions v = a, constant, and some motions [see Ref. 11] that differ by a
rigid body rotation are admissible and have the same potential and complementary energies as the
solution u. This means that the solution to the traction problem is unique to within an infinitesimal
rigid motion.

Finally, if X is only DL stable instead of superstable, there exists some class of virtual
deformations (To C (Tk such that for all non-trivial v E (To, V satisfies (7.10) and f!ll (v, v) dV = O.
When this is so, and if for all other v E (To we have f!ll (v, v) dV> 0, then the solution u(X) to the
mixed problem is, at most, unique to within a motion belonging to the class (To; and the
equilibrium configuration is said to be neutrally stable.

8. UNIQUENES THEOREM FOR THE MIXED, DYNAMIC BOUNDARY
VALUE PROBLEM

The mixed, incremental boundary-initial value problem of motion consists in finding the time
dependent displacement field u(X, t) that satisfies the incremental equations of motion (3.8) for
assigned body and hyper-body forces together with the traction and time dependent displacement
data (7.2H7.5), and the initial conditions at t = 0 in x: u(X, 0) = a(X), li(X, 0) = b(X).

To show for this problem that two solutions u\(X, t) and U2(X, t) are the same, it suffices to
show that their difference v(X, t) = u\(X, t) - U2(X, t) is identically zero for all times t; v(X, t)
being the solution to the following difference problem for dead load body and hyper-body forces:



Some theorems in the theory of small deformations

(a) Equations of motion:

Div T* = p* - Div Q*.

(b) Traction boundary data:

(i) T~= 0, H~= 0 on a~1 of a~

(ii) H~ = 0 on a~2 of a~ such that a~1 n a~2 = t/J,

(c) Displacement boundary data:

which implies also that Dv =0 on a~\a~1 Vt ;;;:0, and

(d) Initial conditions:

(i) veX, 0) =0,

Oi) veX, 0) = 0 everywhere initiallY.
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(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

(8.6)

Since v is a solution of the incremental equations of motion with null incremental body and
hyper-body forces, our energy theorem (5.8) implies

(8.7)

With the aid of (5.2) and application of the boundary data (8.2)-(8.5), it can be shown that the
surface integral in (8.7) vanishes for all times t ;;;: O. Hence, (8.6) and (8.7) yield for all times t

flU «v, v» dV +flU (v, v}dV =O. (8.8)

It is easy to see from (4.8) that for the special case (3.7) the kinetic energy K =
flU (!p" v.v+!IVv' Vv) dv;;;: 0, equality holding only when v= O. Thus, let us assume hencefor­
ward that the following kinetic energy response functional is positive definite, namely,

flU «a, a» dV >0 (8.9)

for all vectors a '# O. Then K = flU «v, v» dV;;;: 0, vanishing for all times if and only if v= O. Now,
if X is DL stable for all motions vex, t) that satisfy (8.1)-(8.6), equation (8.8) implies that each
integral must vanish separately. Hence, veX, t) = 0; that is, for all times, vex, t) = vex, 0) = 0 by
(8.6). We thus reach our

Uniqueness Theorem of Dynamics: Suppose a configuration X in equilibrium under dead load
body actions is DL stable for all motions that meet (8.1)-(8.6) and that the kinetic energy
functional is positive definite. Then the mixed incremental boundary-initial value problem for a
small superimposed motion has at most one solution. Moreover, the displacement problem for
which a~1 = a~2 = t/J, and the traction problem for which a~1 = a~, also have unique solutions.

9. NORMAL MODES AND STABILITY

Let p denote the constant circular frequency of some normal mode motion and consider an
incremental motion U(X, t) = u(X)lp(t) in which U(X) is a continuously differentiable vector
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valued function of X alone and rp(t) =eip
,. It is clear from (4.1) that (u, u) =(ii, ii)rp(2t). For any

tensor valued function Y that is linear in u or its gradients (3.1), we write Y= Y(ii). Then
Y(u) = Y(ii)rp(t) = Yrp(t); and by (3.3) and (3.4) we have T*=1'*Ip(t), H*=H*Ip(t), P*=
ipP*Ip(t) and Q* = ipQ*Ip(t). Equations (3.8)-(3.10) for dead load body actions thus provide the
following equations of motion and traction boundary conditions:

Div 1'* +p 2(p* - Div Q*) = 0,

T~- D· H~= [1'*N - D· (H*N)- p2Q*N]Ip(t)

H~N = H* . (N 0 N)Ip(t), [H~MJ = [H* . (M 0 N)Jrp(t).

(9.1)

(9.2)

(9.3)

Permissible values of p are determined by the specified traction boundary conditions
(9.2)-(9.3) when the solution field ii determined by (9.1) is inserted into these. The resultant
equation for p is called the frequency equation and its roots are called normal frequencies. The
normal mode of frequency Pk is given by u(X, t) =u~(X)Ip!!(t), wheret Ip/>(t) = A~eiP~t, Ak being
an arbitrary constant multiplier and Uk(X) the normal mode function corresponding to p,.. The
general incremental motion of \U is assumed to be a superposition of these normal mode motions:

00

u(X, t) = ~ UdX)lpk(t).
k~l

We shall prove the following

Theorem on Orthogonality of Normal Mode Functions: Let the body actions be constant fields
so that Z* =0, K* =0, and let the boundary conditions (9.2)-(9.3) satisfy

r (Uk . 1'1*+fk . HI*)NdA = r (u/·1't+fl·m)NdA,
Ja~ Ja~

(9.4)

where 1'1* == 1'*(U11p!) = 1'1*(Ut)lp/, etc., and fk = VUk, for any pair of distinct normal motions
having distinct, squared normal frequencies Pk2 and p?, Then the normal mode functions are
orthogonal; i.e.

(9.5)

Proof: For non-trivial fields U =u!!Ip!!, U=Ulrp! the reciprocal theorem (5.5) together with (4.8)
and the commutative property of (4.7) yields

where T~, H~ and T~, H~ denote the surface actions corresponding to the incremental vibrations
U and ii, respectively. Now, with the boundary conditions (9.2)-(9.3) and by the same kind of
analysis that led to (5.3), it can be shown that

Therefore, if (9.4) holds, we shall have

(9.6)

Thus, for all p/ # pl, (9.5) follows from (9.6); and the proof is finished.

t A bar beneath a repeated index indicates no sum on k.
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In the special case (3.7), we find for (9.5)
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and when 1=0, we recover the familiar orthogonality condition. The result (9.5) and the
constraint (8.9) are required for the

Frequency Theorem: Consider a small vibration superimposed upon an equilibrium configu­
ration that is DL superstable under dead load body actions and assume that the kinetic energy
response functional is positive definite. Then, if

(9.7)

all roots of the frequency equation are real and non -vanishing.
Proof: If the frequency equation has an imaginary root Pk2 =a + ib, then p? =a - ib is also a

root. Since the corresponding normal mode functions Uk and u, are complex conjugate functions,
then with (8.9) it can be proved that 1$ «Uk, u,» dV> O. But this contradicts (9.6) unless p? = Pk2

,

i.e. unless b = O. It remains to show that a > O.
Using u = UAlp! in the energy principle (5.8), we see easily that whenever (9.1) holds and the

incremental body actions are zero,

(9.8)

Thus, if X is DL superstable and (8.9) holds, then p/ > 0 follows.
We note that if X is only DL stable, then for some Uk oF 0 it is possible that (u!, u1) = 0; hence,

Pk2 = O. Also, if a < 0 for some k, p/ < 0 and (9.8) implies that the equilibrium configuration X is
unstable, i.e. lie (u!, uII) dV < 0 unless U== O.
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